
Username Enumeration Using Selenium
Raaghavv Devgon

Northeastern University
Boston, MA, USA

devgon.r@northeastern.edu

Abhishek Ningala
Northeastern University

Boston, MA, USA
ningala.a@northeastern.edu

Jugal Joshi
Northeastern University

Boston, MA, USA
joshi.ju@northeastern.edu

Abstract—The objective of this project is to perform username
enumeration on top 500 websites from the Majestic Million
database. We have tried to curate a tool which is generic enough
to be used to perform the attack based on the error messages
shown on the website on multiple websites. For this project
we analyzed 500 websites, each website was unique in their
architecture which made the task at hand challenging, but we
have maneuvered our way out of the problem and have been
able to perform username enumeration on them. Tool has been
created using python and selenium and we were able to test and
perform the enumeration successfully on 50 websites.

Source Code: GitHub

I. INTRODUCTION

User enumeration can be defined when a malicious actor
is allowed to use brute-force techniques to either guess or
confirm valid users in a system. Often web applications reveal
when a username exists on system, either as a consequence
of mis-configuration or as a design decision. For example,
sometimes, when we submit wrong credentials, we receive a
message that states that either the username is present on the
system or the provided password is wrong. The information
obtained can be used by an attacker to gain a list of users
on system. This information can be used to attack the web
application, for example, through a brute force or default
username and password attack. We used this error message
technique as the foundation of our tool.

II. CHALLENGES AT HAND

Each website is unique, each web developer has their own
way of developing a website, therefore, if a website has a login
page, it will have a different username id, name and certain
attribute, they can also be similar in some cases, but as we tried
to evaluate more websites, we realized we would have to tackle
this problem ,as it is different for each website. Similar could
be said for the error messages, each website has their own way
of stating - ”Incorrect email address. Please enter information
again”. Some websites also require email address to login,
some require usernames. Therefore, we decided to manually
visit each of the websites and create individual scripts for
the websites so that we could build a database for the error
messages. There are also different pages on a website via
which a website could be susceptible to this attack, namely:
sign up , login and forgot password, we tested on all three
possible pages to check if they were indeed vulnerable.

Identify applicable funding agency here. If none, delete this.

III. IMPLEMENTATION

We created our tool using Python 3 and Selenium. The
websites were first tested using their individual script, then
we modified our generalized script in order to check if it
worked in a generalized landscape. As we are dealing with
multiple ways a website can take input, we leveraged the
attribute - XPath of a website, we realized the XPath didn’t
differ a lot for websites and we were able to enumerate
50 websites successfully, while keeping track of 5-8 XPath
attributes. This helped us to send the input of a possible
username or email precisely in the respective input fields. As
we the enumerator uses the IP address, we also added the
functionality of TOR as a service, which used as a proxy
to help the user not to get their IP blocked while using the
application. We have created two functions which can be used
based on the flag (P or NP) where P denotes to check if the
error message depicts the username/email to exist, and the
latter is related to the error messages which are related to the
fact the current username doesnt exist. Each of the functions
have their message database, the HTML text on the websites
upon entering a username is parsed using Beautiful soup and
then content is cleared of all special characters and empty
spaces using regex. This approach was adopted as some of
the websites like Adobe, start to insert special characters and
empty spaces in the error messages on repeated tries. Then we
checked each of text on the html against the message database
we had created.

Fig. 1. Enumerating when the username doesn’t exist, by this method you
can see if superman@gmail.com exists, it will not show the error message
shown in the first figure

https://github.com/raaghavvd/UsernameEnumeration


Fig. 2. Enumerating when the username exists, by this method you can see
if superman@gmail.com exists, it will show the error message shown in the
second figure.

IV. ANALYSIS OF THE TOOL

A. Advantages of using the tool.

1) As compared to other tools available, they are limited
i.e they would only work for one particular website, for
example WPScan.

2) The tool, can be easily extended to other websites, we
are currently enumerating over the message database
generated for 50 odd websites, if the error message on
the website you are trying to enumerate doesn’t exist in
the two message files provided, then you would probably
have to insert the message in the database.

3) The user can even supply multiple websites to enumerate
and the tool will still work fine.

B. Disadvantages of using the tool.

1) Currently the tool sleeps for a given amount of time
between processing and enumerating, which might cause
some delay to get the messages.

2) The time complexity is O(n) as the message found on
the target website will be checked against each message
in the database.

3) Some of the websites know they are accessed by se-
lenium, therefore they would throw a CAPTCHA after
certain number of attempts, thwarting any further at-
tempts to enumerate by the user.

4) The tool works on 50 of the 100 websites we found to
be vulnerable.

5) One of the issues of the tool is that it needs a URL
to enumerate, so if the login page, sign up page don’t
exist on a separate link, it would be difficult for the tool
to find the login button on the website, for example:
Twitch.

V. PROBLEMS FACED

We faced a lot of challenges during the implementation of
this project, namely because of the uniqueness of each website
and the attempt to generalize them for our tool:

1) Some websites didn’t have allow us to access via TOR,
this thwarted our tool, unable to enumerate.

2) There were also situations where the TOR IP was of a
different country, hence leading us to a website which
was not in English (specifically happened in Google),
which made it difficult to match the error messages.

3) Some websites captchas, which didn’t allow us to send
the respective responses.

4) Exponential Backoffs.
5) Some sites display ”Accept cookie” messages, at times,

the enumeration cannot proceed until one interacts with
this message. Only workaround is to stop and rerun the
program if the program remains idle for a long time.
We noticed this happens only for a few sites, it worked
properly most times so this was not deemed a major
problem.

6) We were also at times, unable to locate element to send
our input to, for example Instagram.

VI. FINDINGS

We created two functions for our tool as discussed above,
one which deal with messages where you can enumerate when
the username doesn’t exist, and the messages where you can
enumerate with the messages when the username exists.

1) We found that approximately 95% of the websites could
be enumerated with just the sign up or registration pages

2) We found that some adult websites and dating websites
also suffered from this problem. This can potentially
have adverse effects on the users as it violates their
privacy. Websites like Redtube and OkCupid were found
to be vulnerable.

3) Some of the websites like Spotify, didn’t require the
user to fill up the entire registration form, if they did,
it would’ve thwarted our attempt to enumerate as they
also required CAPTCHA, but currently as of writing
this paper, if you enter an email address and press
enter on their registration page, you will see a message,
irrespective of the fact that you haven’t filled the form
entirely.

4) Even FAANG websites (Facebook,Amazon, Apple, Net-
flix, Google) were vulnerable to this form of username
enumeration.

VII. FUTURE WORK

There are significant ways this tool can be improved.
Currently how the tool checks if the message exists in the
database, is by comparing each of the messages with the
text on the website. We could leverage a sub-string matching
algorithm in order to compute the match and reduce the
computational overhead. We can also have a set of specific
keywords and use that for enumeration. Another interesting
approach could be to use the semantic analysis from Natural
Language Processing in order to find the generic messages and
what they mean using the text. Of course, we could also try
to incorporate other ways to perform username enumeration
using timed based response etc, this would improve the tool
and also bolster the confidence in the results.

VIII. CONTRIBUTION

Each member of the team contributed towards the project.
All members did a great job of enumerating each website and
creating individual scripts for the websites. Abhishek did a lot



of manual work and helped figure out the XPATH solution. Ju-
gal helped in selenium and visualizing the generalized Script.
Raaghavv incorporated the individual scripts into a generalized
version. All members helped testing the 50 websites multiple
times. The script was moved into the Docker environment by
Raaghavv and the report has been composed by all members
of the team.

IX. SUMMARY

To conclude, we successfully developed a tool using se-
lenium which used the error message based technique to
perform username enumeration. We performed the attack on
100 websites which were deemed vulnerable and our tool
helped enumerate on 50 of those websites. Websites such
as Spotify, Netflix, Google, Yahoo, Amazon, Adobe can be
enumerated using our tool. We know the ways our tool can be
improved, and we hope to improve it in the future to create a
more robust and efficient enumerator, which can be used on
multiple websites.

REFERENCES

[1] OWASP: owasp.org
[2] Laverty, Patrick. “User Enumeration Explained: Techniques and Pre-

vention Tips: Rapid7 Blog.” Rapid7, Rapid7 Blog, 19 Dec. 2019,
www.rapid7.com/blog/post/2017/06/15/about-user-enumeration/.

[3] Jake. “5 Ways to Enumerate Usernames in Web Applications.” Laconic
Wolf, 23 Aug. 2018, laconicwolf.com/2018/08/22/5-ways-to-enumerate-
usernames-in-web-applications/.

[4] Nanu. “What Is Username Enumeration Vulnerability ?” Free Learning
Tech, 16 Dec. 2020, freelearningtech.in/what-is-username-enumeration-
vulnerability/.

[5] Mohamed, Ahmed Elhady. “WordPress Username Enumeration Tech-
niques and How to Fix Them.” Medium, Medium, 21 Nov.2017

[6] “Getting Started.” Getting Started :: Documentation for Selenium,
[7] “Tor Browser User Manual.” Tor Browser User Manual — Tor Project

— Tor Browser Manual, tb-manual.torproject.org/.


	Introduction
	Challenges at hand
	Implementation
	Analysis of the tool
	Advantages of using the tool.
	Disadvantages of using the tool.

	Problems faced
	Findings
	Future work
	Contribution
	Summary
	References

